

# Soilborne Diseases of Vine Crops and Their Management

### Sally Miller Department of Plant Pathology

Ohio Valley Giant Pumpkin Growers Salem, OH March 10, 2018

# When managing soilborne diseases, we want to

- Prevent existing pathogen populations from increasing
  - Keep disease pressure low
  - Use management practices that promote general plant and soil health
  - Use management practices that prevent pathogens from multiplying (such as using resistant varieties, rotation or fungicides)
- Reduce existing pathogen populations
  - Reduce disease pressure in soil
  - Involves some form of soil disinfestation

# Keys to reducing soilborne diseases

- Prevention
  - Use clean planting materials
    - Heat-treat seeds for seedborne bacterial and fungal diseases
    - Clean transplants
      - When in doubt, throw it out!
- Sanitation
  - Remove plant materials
  - Rogue diseased plants
  - Clean equipment between areas
  - Sanitize walls, concrete floors between crops
- Rotate out of plant families (when possible)
- Grow resistant varieties
- Maintain proper fertility
- Reduce plant stress

# Phytophthora Blight



- Phytophthora capsici
- Favored by warm, rainy conditions
- Most often observed in low spots or other areas with poor drainage
- Affects roots, stems, leaves and fruit
- Pathogen survives at least
   5 years in soil



Babadoost, M. 2005. Phytophthora blight of cucurbits. The Plant Health Instructor. DOI:10.1094/PHI-I-2005-0429-01



# Management

- Rotate away from susceptible crops at least 3 years
- Choose appropriate site
  - Well-drained soil
  - Avoid low areas
  - Improve soil increase organic matter content



- Use raised beds
  - High beds ( $\geq$  9 in.); formed with a bed shaper
  - No depressions on top
  - Beds graded on ends for drainage
- Fill in trenches/depressions around base of transplants with soil



Provide for drainage at the ends of the field

• Scout for and remove crown rot-diseased plants, and plants 5 ft into healthy area

• Apply fungicides

### Phytophthora Blight Management - Fungicides

- Tested combinations of fungicides against Phytophthora blight (2<sup>nd</sup> year)
  - Drench + foliar vs. foliar alone
  - Effect of adding Kocide 3000 to each foliar application
- Conducted in field with natural infestation of Phytophthora, but also inoculated plants
  - Exposed test plots to one infected zucchini fruit
  - Disease incidence lower than in 2016
- Funded by OVSFRDP



Acorn squash 'Autumn Delight'



### **Treatments (1)**

#### Treatment (Orondis Gold drench at transplant fb foliar fungicides)

```
Orondis Gold 200 4 fl oz/A (drench) fb
   Ranman 400SC 2.75 fl oz/A + Activator 90SL 0.25% v/v (1,3,5)
   alt Presidio 4SC 4 fl oz/A (2,4,6)
Orondis Gold 200 14 fl oz/A (drench)
   Ranman 400SC 2.75 fl oz/A + Activator 90SL 0.25% v/v (1,3,5)
   alt Zampro 14 fl oz/A + Activator 90SL 0.25% v/v (2,4,6)
Orondis Gold 200 14 fl oz/A (drench)
   Presidio 4SC 4 fl oz/A (1,3,5)
   alt Zampro 14 fl oz/A + Activator 90SL 0.25% v/v (2,4,6)
Orondis Gold 200 14 fl oz/A (drench)
  Revus 2.09SC 8 fl oz/A + Kocide 3000 46.1DF 1 lb/A + Activator 90SL 0.25% v/v (1,3,5)
  alt Presidio 4SC 4 fl oz/A (2,4,6)
Orondis Gold 200 14 fl oz/A (drench)
  Revus 2.09SC 8 fl oz/A + Kocide 3000 46.1DF 1 lb/A + Activator 90SL 0.25% v/v (1,3,5)
  alt Tanos 50 DF 10 oz/A+ Kocide 3000 46.1DF 1 lb/A + Activator 90SL 0.25% v/v (2,4,6)
Orondis Gold 200 14 fl oz/A (drench)
  Revus 2.09SC 8 fl oz/A + Kocide 3000 46.1DF 1 lb/A + Activator 90SL 0.25% v/v (1,3,5)
  alt Ranman 400SC 2.75 fl oz/A + Activator 90SL 0.25% v/v (2,4,6)
Orondis Gold 200 14 fl oz/A (drench)
  Revus 2.09SC 8 fl oz/A + Kocide 3000 46.1DF 1 lb/A + Activator 90SL 0.25% v/v (1,3,5)
  alt Presidio 4SC 4 fl oz/A + Kocide 3000 46.1DF 1 lb/A (2,4,6)
```

Non-treated control



### Treatments (2)

#### **Treatment (Foliar fungicides only)**

Orondis Ultra 8 fl oz/A (1,4)

```
alt Ranman 400SC 2.75 fl oz/A + Activator 90SL 0.25% v/v (2,3,5,6)
```

Orondis Ultra 8 fl oz/A + Kocide 3000 46.1DF 1 lb/A (1,4) alt Ranman 400SC 2.75 fl oz/A + Kocide 3000 46.1DF 1 lb/A + Activator 90SL 0.25% v/v (2,3,5,6)

**Orondis Ultra** 8 fl oz/A (1,4) alt **Presidio** 4SC 4 fl oz/A (2,3,5,6)

**Orondis Ultra** 8 fl oz/A + **Kocide** 3000 46.1DF 1 lb/A (1,4) alt **Presidio** 4SC 4 fl oz/A + **Kocide** 3000 46.1DF 1 lb/A (2,3,5,6)

```
Orondis Ultra 8 fl oz/A (1,4)
```

alt Tanos 50DF 10 oz/A + Kocide 3000 46.1DF 1 lb/A + Activator 90SL 0.25% v/v (2,3,5)

**Orondis Ultra** 8 fl oz/A + **Kocide** 3000 1 lb/A (1,4) alt **Tanos** 50DF 10 oz/A + **Kocide** 3000 1 lb/A + Activator 90SL 0.25% v/v (2,3,5)

Non-treated control



#### **Orondis Gold Drench at Transplanting fb Foliar Fungicides**





#### **Orondis Gold Drench at Transplanting fb Foliar Fungicides**



#### Marketable Yield (t/A)



#### **Orondis Gold drench fb Presidio** alt Zampro foliar



#### **Non-treated control**





COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

### **Phytophthora blight control**

#### **Foliar Fungicides Only**





#### **Orondis Ultra alt Presidio foliar**



#### **Non-treated control**





- For second year, no apparent advantage to Orondis Gold application as a drench at transplanting vs. Orondis Ultra foliar
  - Phytophthora blight usually first observed in July; squash planted May 31, exposed to inoculum July 18 – likely very low residual fungicide by mid-July
- All treatments suppressed Phytophthora blight
- No apparent advantage to adding Kocide 3000 to the foliar fungicides
- Orondis is not effective against Pythium species



#### **Recommendations – Winter Squash/Pumpkins**

- Vines and fruit very susceptible
- Apply effective foliar fungicides prior to symptoms
  - Orondis Ultra (0 days PHI)
  - Orondis Opti (0)
  - Presidio (2)
  - Ranman (0)
  - Zampro (1)



Symptoms usually start appearing in mid-July

# **Biological Disease Prevention and Rescue**

- "Purposeful utilization of introduced or resident living organisms, other than disease resistant host plants, to suppress the activities and populations of one or more plant pathogens" Pal and McSpadden Gardener, Plant Health Instructor 2006
  - Microbial inoculants and/or their metabolites to suppress a given pathogen or class of pathogens – specific suppression
  - Managing soils to promote the combined activities of native soil- and plant-associated microorganisms that contribute to general suppression

## **Common Fungal Biopesticides**

| Product                                       | Registrant  | Target                                          | Active Ingredient                       |
|-----------------------------------------------|-------------|-------------------------------------------------|-----------------------------------------|
| SoilGard                                      | Certis      | Pythium, Rhizoctonia,<br>Fusarium               | Gliocladium virens GL-21                |
| Actinovate                                    | Novozymes   | Soilborne pathogens,<br><i>Botrytis,</i> PM     | <i>Streptomyces lydicus</i> WYEC<br>108 |
| Mycostop                                      | Agbio, Inc. | Fusarium, Phytophthora,<br>Pythium, Alternaria  | Streptomyces griseoviridis K61          |
| Prestop                                       | Agbio, Inc. | Broad claims – fungal<br>pathogens              | Gliocladium catenulatum<br>J1446        |
| Rootshield Home &<br>Garden;<br>Rootshield WP | Bioworks    | Pythium, Phytophthora,<br>Rhizoctonia, Fusarium | Trichoderma harzianum KRL-<br>AG2       |
| Rootshield PLUS<br>WP                         | Bioworks    | Pythium, Phytophthora,<br>Rhizoctonia, Fusarium | T. harzianum KRL-AG2/T.<br>virens G-41  |

# **Bacillus Biopesticides - Crops**

| Product<br>(formulation type)* | Registrant | Target                           | Crops      | Active Ingredient                                                  |
|--------------------------------|------------|----------------------------------|------------|--------------------------------------------------------------------|
| Double Nickel WG               | Certis     | Fungal and<br>Bacterial diseases | Many crops | Bacillus<br>amyloliquefaciens<br>strain D 747                      |
| Lifegard WG                    | Certis     | Fungal and bacterial diseases    | Many crops | Bacillus mycoides isolate<br>J                                     |
| Prevont (SC)                   | Seipasa    | Fungal diseases                  | Many crops | Bacillus subtilis<br>strain IAB/BS03                               |
| Serifel (SC)                   | BASF       | Fungal and<br>Bacterial diseases | Many crops | Bacillus subtilis, <b>strain</b><br>MBI 600                        |
| Serenade ASO (SC)              | Bayer      | Fungal and<br>Bacterial diseases | Many crops | Bacillus subtilis, strain<br>QST 713                               |
| Serenade Opti (WP)             | Bayer      | Fungal and<br>Bacterial diseases | Many crops | Bacillus subtilis, strain<br>QST 713                               |
| Taegro (SC)                    | Novozymes  | Fungal and<br>Bacterial diseases | Many crops | Bacillus subtilis var.<br>amyloliquefaciens <b>strain</b><br>FZB24 |

#### Compiled by Denise Manker, Bayer, April 2017

### **Common Biorationals/Sanitizers**

| Product   | Registrant             | Target                                                                                | Active Ingredient           |
|-----------|------------------------|---------------------------------------------------------------------------------------|-----------------------------|
| Regalia   | Marrone Bio            | Broad claims                                                                          | Giant knotweed extract      |
| Trilogy   | Certis                 | Powdery mildew                                                                        | Neem oil                    |
| Fungastop | Soil Technologies      | Pythium, Rhizoctonia,<br>Fusarium                                                     | Citric acid/mint oil        |
| Proud 3   | Huma Grow              | <i>Pythium, Phytophthora,</i><br>clubroot <i>, Sclerotium,</i><br>nematodes           | Thyme oil                   |
| Sporatec  | Brandt<br>Consolidated | Anthracnose, powdery<br>mildew, downy mildew,<br>Botrytis, leaf spots,<br>bacterial s | Rosemary, thyme, clove oils |
| Kaligreen | Otsuka Chem            | Powdery mildew                                                                        | Potassium bicarbonate       |
| Milstop   | Bioworks               | Powdery mildew                                                                        | Potassium bicarbonate       |
| Oxidate   | Biosafe Systems        | Pythium, Rhizoctonia,<br>Fusarium                                                     | Hydrogen dioxide            |



# Specific Suppression of Damping-Off

- Pre-emergence
  - Reduced germination
- Post-emergence
  - Seedling death or injury
- Often associated with excessive moisture, suboptimal temps
- Pythium spp.
- *Rhizoctonia* solani
- Fusarium spp.



### Biorational Products to Prevent Pythium Damping-Off

| Product       | Туре         | Active Ingredient             |
|---------------|--------------|-------------------------------|
| SoilGard      | Biological   | Trichoderma virens            |
| Actinovate    | Biological   | Streptomyces lydicus WYEC 108 |
| Thymol        | Botanical    | Thyme extract                 |
| Neem oil      | Botanical    | Neem extract                  |
| ProPhyt       | Chemical/ISR | Potassium phosphite           |
| Oxidate       | Chemical     | Hydrogen dioxide              |
| Ranman        | Fungicide    | Cyazofamid                    |
| Ridomil Gold  | Fungicide    | Mefanoxam                     |
| Previcur Flex | Fungicide    | Propamocarb hydrochloride     |
| Thiram        | Fungicide    | Thiram                        |

#### Biocontrol of Pythium PRE-emergence Damping-Off (Pepper)



### Biocontrol of Pythium POST-emergence Damping-Off (Pepper)



#### **Biorational Products: Rhizoctonia Damping-Off**

| Product                  | Туре         | Active Ingredient                          |
|--------------------------|--------------|--------------------------------------------|
| SoilGard                 | Biological   | Gliocladium virens GL-21                   |
| Actinovate               | Biological   | Streptomyces lydicus WYEC 108              |
| Mycostop                 | Biological   | Streptomyces griseoviridis K61             |
| Prestop                  | Biological   | Gliocladium catenulatum J1446              |
| Double Nickle LC         | Biological   | Bacillus amyloliquefaciens D747            |
| Rootshield Home & Garden | Biological   | Trichoderma harzianum KRL-AG2              |
| Rootshield PLUS WP       | Biological   | T. harzianum KRL-AG2/T. virens G-41        |
| Rootshield WP            | Biological   | Trichoderma harzianum KRL-AG2              |
| Serenade Soil            | Biological   | Bacillus subtilis QST713                   |
| Subtilex                 | Biological   | Bacillus subtilis MBI600                   |
| Regalia                  | Botanical    | Giant knotweed extract                     |
| PhosPhite                | Chemical/ISR | Phosphoric Acid (28%)/sol. potash (26%)    |
| Banrot                   | Fungicide    | Etridiazole (15%)/thiophanate-methyl (25%) |
| Previcur Flex            | Fungicide    | Propamocarb hydrochloride                  |

### Biocontrol of Rhizoctonia PRE-emergence Damping-Off (Pepper)



# **General Suppression Approaches**

- Manipulate (soil) environment to
  - Optimize plant nutrition
  - Build/introduce beneficial microbial communities
  - Increase competition against pathogens
- Provide exogenous food supplies
  - Green manure
  - Composted animal manure

### **Biorational Products and Amendments**

| Product              | Туре         | Active Ingredient              |
|----------------------|--------------|--------------------------------|
| Mycostop             | Biological   | Streptomyces griseoviridis K61 |
| Prestop              | Biological   | Gliocladium catenulatum J1446  |
| Th 382               | Biological   | Trichoderma hamatum 382        |
| Serenade ASO 0.5%    | Biological   | Bacillus subtilus QST713       |
| Serenade ASO 1%      | Biological   | Bacillus subtilus QST713       |
| Serenade ASO 2%      | Biological   | Bacillus subtilus QST713       |
| Composted cow manure | Animal-based | Compost                        |
| Seacide              | Animal-based | Fish emulsion                  |
| Omega Grow           | Animal-based | Fish emulsion                  |
| Omega Grow Plus      | Animal-based | Fish emulsion                  |

# **Suppression of Pythium Damping-Off**



### **Suppression of Rhizoctonia Damping-Off**





# New Approach for Soilborne Disease Management

- Anaerobic soil disinfestation (ASD)
  - Microbial soil rehabilitation
  - Reduce soil populations of pathogens, pests and weeds
  - Still being optimized
  - Open field and protected culture

# Anaerobic Soil Disinfestation (ASD)

- Biological soil disinfestation, reductive soil disinfestation, biosolarization
- Add carbon source, irrigate, and tarp
- Effective in a wide variety of cropping systems
   Open field, raised beds, protected culture
  - Vegetables, fruits, nuts, trees, flowers
- Effective against a wide variety of pathogens

# Pathogens Controlled by ASD

| Fungi                       | Oomycetes           | Bacteria                     | Nematodes                 |
|-----------------------------|---------------------|------------------------------|---------------------------|
| Verticillium dahliae        | Phytophthora spp.   | Ralstonia<br>solanacearum    | Meloidogyne spp.          |
| <i>Fusarium</i> spp.        | <i>Pythium</i> spp. | Agrobacterium<br>tumefaciens | Globodera pallida         |
| Rhizoctonia solani          |                     |                              | Pratylenchus<br>penetrans |
| Sclerotium rolfsii          |                     |                              |                           |
| Pyrenochaeta<br>Iycopersici |                     |                              |                           |
| Sclerotinia spp.            |                     |                              |                           |



COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

# **ASD Carbon Sources**



#### Wheat bran

#### Rice bran



Molasses



Ethanol



#### Cover crops and crop residues



AND ENVIRONMENTAL SCIENCES

### Application of ASD



COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

### ASD reduces root rot

covered

uncovered



**Root Rot Severity** 

THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

# ASD kills nematodes





# Effects on Plant Health





# Three Steps of ASD

- 1. Incorporate organic matter
- 2. Saturate the soil
- 3. Tarp with plastic



# **Choosing a Carbon Source**

- Many options available
  - Wheat bran, rice bran, molasses, cover crops, ethanol
- Usually applied at a rate of 6-9 tons per acre
- Our best combination is wheat bran at 9 t/a and molasses at 4.5 t/a







# Spreading the Wheat Bran

Small scale

Large scale





# Incorporating the Wheat bran

Small scale

Large scale



#### Work to a depth of 6-8 inches



# **Adding Molasses**

Small scale

Large scale



#### If spraying, nozzles often clog even if diluted



Irrigate



Soil needs to be saturated to the point where water just begins to pond and won't drain anymore Supplemental water may be needed



# Tarp with Plastic

Small scale

Large scale



- Use a heavy plastic mulch and bury or cover edges of plastic to prevent air exchange
- Soil temperature should be above 68° F for at least first week (warmer and longer is better)
- Keep plastic on for 4-6 weeks (4 weeks is usually plenty!)

# Planting Following an ASD Treatment

- Remove plastic or cut holes in plastic
- Allow soil to drain and breathe for about one week
- Check soil fertility
- Plant as usual
- Watch plants for signs of nutrient deficiencies
   Especially nitrogen
- If disease levels are high, treatment may need to be applied for several years



# ASD Costs

- Wheat bran, \$9-14 per 50 lb bag
   Cost per 30' x 96' high tunnel: \$216-336
- Organic molasses, \$36 for 5 gallons (approximately 60 lbs)

– Cost per 30' x 96' high tunnel: \$720

 Conventional feed-grade molasses, \$15 for 100 lbs

– Cost per 30' x 96' high tunnel: \$179



- We conduct farmer-focused research
- Identifying the best carbon sources (NC-SARE)
  - Alternate carbon sources
    - Cover crops
    - Ag waste products
- Optimizing ASD for high tunnels (ODA and NC-SARE)
- ASD in different settings
  - Greenhouse
  - High tunnel
  - Open field
  - Muck soils
- ASD for management of multiple pests (OVSFRDP)
  - Soilborne disease complex in tomato
  - Root knot nematode in lettuce
  - Clubroot in mustard greens



# **Questions???**

Follow Dr. Miller at:

Ohio Veggie Disease News

u.osu.edu/miller.769/

Veggie Disease Facts

u.osu.edu/vegetablediseasefacts/

**High Tunnel Disease Facts** 

u.osu.edu/hightunneldiseasefacts/

Twitter

@ohioveggiedoc