

WESTERN LABORATORIES, INC.

P.O. Box 1020

PARMA, IDAHO 83660

USEFUL CONVERSIONS AND TABLES FOR WESTERN LABORATORIES REPORTS

SMALL CONCENTRATIONS ppm = parts per million ppm = parts per million parts = pounds/million pounds ppm ÷ 10,000 = per cent	PHOSPHORUS-P, Sodium Bicarbonate Method P, ppm Evaluation 1-4 very low 5-11 low	Approximate Pounds of S (Based on 99% S) Needed to Lower the Soil pH of One Acre-Foot of Soil Pounds of Sulfur/Acre						
ppm = per cent × 10,000 ppm = milligrams/liter ppm × 0.00136 = tons/AcFt of water ppm × 0.0584 = grains/gallon ppm = 17.12 × grains/gallon ppm × 8.345 = pounds/million gallons ppm = 640 × soluble salt reading	12-25 medium 26-45 high 45+ very high POTASSIUM-K, Ammonium Acetate Method K, ppm Evaluation	Pounds of Sulfur/Acre Change in pH Sand Loam Clay 8.5 to 6.5 3,500 4,375 5,250 8.0 to 6.5 2,450 2,625 3,500 7.5 to 6.5 875 1,400 1,750 7.0 to 6.5 175 275 525						
$ppm \times 2 = pounds/Ac. turrow since ppm \times 3.5 = pounds/Ac.Ft ppm Ca ÷ 200 = 1 meq Ca ppm Na ÷ 230 = 1 meq Na ppm K ÷ 390 = 1 meq K ppm Mg ÷ 120 = 1 meq Mg$	0-100 very low 101-200 low 201-450 medium 451-750 high 750+ very high	Calculations for Salt Problem Soils Ca-ppm \div 200 = meq Ca, Na-ppm \div 230 = meq Na, Mg-ppm \div 120 meq Mg, K-ppm \div 390 = meq k To calculate the per cent sodium of the Cation Exchange Capacity $\frac{\text{meq Na}}{2} \times 100 = \%$ Na of the CEC						
WEIGHTS AND VOLUMES 1 acre-foot of soil = approx. 3,500,000 pounds 1 acre-furrow slice = approx. 2,000,000 pounds 1 square acre = 43,560 Ft ² 1 acre-foot of water = about 2,722,500 pounds 1 acre-foot of water = 325,851 gallons 1 acre-inch of water = 27,154 gallons	CALCIUM — CaMAGNESIUM — MgCa, ppmEvaluationMg, ppmEvaluation0-900very low0-150very low901-1500low151-350low1501-4000medium351-600medium4001-5000high601-1200high5000 +very high1200 +very high	CEC Base Saturation: meqs $\frac{Ca + Mg + K + Na}{CEC} \times 100 = \%$ BS ppm $\frac{Ca + Mg + K + Na}{CEC \times 2} = approx. \%$ BS						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SODIUM — Na Na, ppm Evaluation 0-30 very low 31-60 low 61-175 medium 176-450 high 450+ very high	1 meq of Ca/100g = 200 ppm or 400 lbs/AFS or 700 lbs Ca/AcFt 1 meq of Mg/100g = 120 ppm or 240 lbs Mg/AFS or 420 lbs Mg/AcI 1 meq of K/100g = 390 ppm or 780 lbs K/AFS or 1365 lbs K/AcFt 1 meq of Na/100g = 230 ppm or 460 lbs/AFS or 805 lbs Na/AcFt % Na of the CEC Based on Different Sodium Concentrations and Cation Exchange Capacities CEC in meg/100g of soil						
SOIL nH - Hydrogen Ion Concentration	Element Low to Deficient Adequate SO4-S (sulfate water sol) less than 10 ppm 10 to 30 ppm Tractice he DTDA TEA) less than 0.8 ppm 0.4 to 40 ppm	Soil 8 10 12 14 16 18 20 22						
The soil is measured on a 1:2 soil to water solution. The pH indi- cated on the report measures the active soil alkalinity or acidity.	In (manganese by DTPA-TEA)less than 0.8 ppm.5 to 4.0 ppmMn (manganese by DTPA-TEA)less than 2.0 ppm3 to 7 ppmCu (copper by DTPA-TEA)less than 0.3 ppm.7 to 4.0 ppm	in ppm-Na % Sodium of the CEC						
pH below 5.5 strongly acid soil pH 5.5 to 5.9 moderately acid soil	Fe (iron by DTPA-TEA) less than 5.0 ppm 5 to 10 ppm B (boron by hot water sol) less than 0.5 ppm .5 to 2.0 ppm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
nH 6.0 to 6.5 elichtly sold soil pH 6.6 to 7.2 neutral soil pH 7.3 to 7.7 slightly basic soil pH 7.8 to 8.4 moderately basic soil high in free lime pH above 8.5 strongly basic soil high in total salts SOLUBLE SALTS — Electrical Conductivity Scale of Conductivity in mmhos/cm 0 2 4 8 16 Salt effects Yields of sensitive many crops Only salt or yield tolerant Only a few very tolerant	Element Excessive to Toxic SO4 (sulfate water sol) — Zn (zinc by DTPA-TEA) 15 + ppm Mn (Manganese by DTPA-TEA) 150 + ppm Cu (copper by DTPA-TEA) 20 + ppm Fe (iron by DTPA-TEA) — B (boron by hot water sol) 3 + ppm Approximate Relation of Cation Exchange Capacity to Soil Texture CEC Soil Texture 0-8 sand/loamy sand	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
may be restricted satisfactory satisfactory crops yield satisfactory The relative Salt Tolerance of Some Crops may be found in our Salt Problem Information Sheet. Satisfactory Satisfactory	8-12 loamy sand/sandy loam 12-16 sandy loam 16-20 silt loam/loam 20-24 loam/silty clay loam 24-30 clay loam	Salme soil — pH below 8.5, sodium less than 15%, soluble salts less than 4. Sodic soil — pH greater than 8.5, sodium greater than 15% soluble salts less than 4. Saline — Sodic soil — pH less than 8.5, sodium greater than 15%, soluble salts greater than 4.						
ORGANIC MATTER — Walkley-Black	ou + clay	Crop Tolerance for Per Cent						
Matter Evaluation 0 to 0.9 very low 1.0 to 1.5 low 1.6 to 2.5 medium 2.6 to 4.9 high above 5.0 very high	FREE LIME — CaCO ₃ , 1N HC1 Method % Lime Evaluation 025 very low .255 low .6-2.9 medium 3.0-8.0 high 8.1 + very high Sulfur Required to Neutralize the Free Lime Lbs S Requird to Neutralize the	Nation the CESC0 to 5%5 to 10%10 to 15%15 + %BeansWheatCrested WheatBarleyStrawberriesOatsFescueSalt GrassCarrot SeedSpearmintPerennial RyeSalt GrassCarrot SeedAlfalfaSugar BeetsSalt GrassOnionsTurnip SeedTall WheatLettuce SeedSweet CornBirdsfoot TrefoilFruit TreesField CornPotatoesPastureHopsCottonOrchard GrassCabbage Seed						
Organic Matter Release of Nitrogen/Acre/Year % OM × Factor = pounds Nitrogen/Ac/Yr Factors: 60 S.E. Washington-N.E. Oregon 55 Winnemucca, Nevada 50 E. Oregon-S.W. Idaho 40 Magic Valley, Idaho 35 E. Idaho-N. Utah 30 W. Wyoming	Keurranze the % Lime Lbs Free Lime/Ac Ft Free Lime 0.5 $17,500$ $5,933$ 1.0 $35,000$ $11,667$ 1.5 $52,500$ $17,500$ 2.0 $70,000$ $23,333$ 2.5 $87,500$ $29,167$ 3.0 $105,000$ $35,000$ 3.5 $122,500$ $40,833$ 4.0 $140,000$ $46,667$ 4.5 $157,500$ $52,500$ 5.0 $175,000$ $58,333$ 6.0 $210,000$ $70,000$	Most Clovers Celery Tomatoes Peppermint Peas Converting Foliar Micronutrient Materials From Per Cent to Pounds Per Gallon Liquid % Metallic × weight/gallon = pounds metal/gallon						
NITRATE-NITROGEN, Buffered Extraction Method The measurement of NO3-N determines residual nitrogen. The following range reflects average soil levels and does not suggest nitrogen requirements for particular crops. NO3-N, ppm Evaluation 0-5 very low 6-10 low 11-25 medium 26-40 high 41+ very high	8.0 280,000 93,333 10.0 350,000 116,667 15.0 525,000 175,000 20.0 700,000 233,333	Dry % Metallic × 1 pound = pounds metal/pound JOHN P. TABERNA Soil Scientist						

WESTERN LABORATORIES Pumpkin Testing

211 Hwy 95 Parma, ID 83660 1-208-649-4360 westernlaboratories.com

Western Laboratories ATLANTIC GIANT PUMPKIN PROGRAM

This is the ultimate monitoring program! It is designed for those growers trying to raise pumpkins greater than 1,800 pounds in size.

SV Pumpkin	
1 Pre-Season Soil + Nematode	\$101.00
1 Pre-Season, Post-Amendment Soil	\$55.00
5 Complete Tissue	\$230.00
5 Soil Supply Rate Tests	\$200.00
	\$586.00
Program Pre-Paid Discount	-\$261.00
PROGRAM TOTAL	\$325.00

Please Submit Payment With 1st Sample

Sample Collection Schedule: July 1st, July 15th, August 1st, August 15th, & September 1st.

	INDIVIDUAL	L PRICES	
Complete Soil	55.00	Tissue Test	46.0
Soil Supply Rate Tes	40.00	Nematode	46.0
	DNA Diseases	Call lab	

211 Highway 95 • Parma, ID 83660 Phone: 800-658-3858 • Fax: 208-402-5303 • westernlaboratories.com

Western Laboratories, Inc.

TEST	ATLANTIC GIANT PUMPKIN FEE SCHEDULE	PRICE
75	Complete Soil Test for Atlantic Giant Pumpkin pH, texture, soluble salts (ECe), Cation Exchange Capacity (true), percent lime, percent organic matter, nitrates, ammonium, phosphorus (alkaline soils – sodium bicarbonate extract, acid soils – Bray extract), potassium, calcium, magnesium, sodium, zinc, iron, manganese, copper, sulfates and boron	55.00
755	Complete Soil Test for Atlantic Giant Pumpkin PLUS Soil Solution	95.00
11	Complete Tissue Test for Atlantic Giant Pumpkin — Nitrates, phosphorus, potassium, calcium, magnesium, sulfur, zinc, copper, manganese, iron and boron, recommendations. This is for crops requiring Nitrogen.	46.00
80	Disease Test for Atlantic Giant Pumpkin Pythium, Phytopthora, Fusarium, Verticilium	145.00

Prices subject to change without prior notice.

Knowledge for Giant Pumpkin & Watermelon Growers By John P. Taberna – Soil Scientist

For more information please visit www.westernlaboratories.com/publications-from-john

If the water extracted pH is less than 6.7, add 10 pounds of lime per 1000 sq. ft. If the pH is greater than 6.7 and the Ca is less than 2400 ppm, add 5 pounds gypsum. It takes up to 7 years for lime to completely dissolve. Don't expect rapid increase in pH. Remember: You're only treating the top 6 inches with lime. Gypsum will go into solution in the first year.

Fertilizer Recommendations:

Phosphorus (P)

The lab suggests 2 pounds of Phosphorus per 1000 sq. ft. 11-52-0 Ammonium Phosphate is a common Phosphorous fertilizer and it contains 3% sulfur. Take the 2-pound recommendation and divide by .52 (% P in 11-52) and you get 3.88 pounds 11-52. The problem is the recommendation is P and 11-52 is Phosphate. You now need to multiply the 3.85 by 2.3. You will get 8.86 pounds of 11-52 per 1000 to get the 2-pound P recommendations.

Nitrogen (N)

The lab recommended 3.5 pounds of Nitrogen per 1000 sq., but you should only to apply ½ preplant. So, 3.5/2=1.75 pound of N. There is 11% N in the 11-52 so take 8.86 pounds of 11-52 applied and multiply it by .11 (8.86x.11) you get 0.97 pounds of Nitrogen. You are going to apply 1.75 pounds Nitrogen pre-plant, so 1.75-0.97=0.78 pounds N. Your pH is above 7 so you are going to use ammonium sulfate (21-0-0-24). Ammonium Sulfate contains 21% N so 0.78/.21=3.7 pounds Ammonium Sulfate and with the Nitrogen in the 11-52, you have 1.75 pounds Nitrogen pre-plant.

Potassium (K)

The lab recommends 5 pounds Potassium per 1000 sq. ft. The best source for pre-plant K is 0-0-50 Potassium Sulfate. The K in 0-0-50 is K20, not K. So 50/1.2= K in 0-0-50 (42% K). You will need to apply 12 lbs. 0-0-50 to get 5 lbs. per 1,000 sq. ft.

* During midseason, if you notice marginal burning, add 2 pounds of 0-0-60 Potassium Chloride per 1000 sq. ft. and thoroughly water with overhead irrigation.

Potassium was the biggest deficiency from midseason on for Ron Wallace when he hit the 2,009-pound giant pumpkin.

Sulfur (S) All products suggested contain Sulfur. There is no need to add more.

Magnesium (Mg)

The lab recommends 0.7 pounds of Magnesium. Epsom Salt is the easiest to find and it contains 10% Mg. 0.7 pounds/0.1= 7 pounds Epsom Salt to apply per 1000 sq. ft. When burying the vines, always add ½ teaspoon of Epsom Salt. Be sure to thoroughly mix. When drenching, add ½ teaspoon Epsom Salt to the drench. During midseason, if you see mottling and blistering, foliar spray 1 teaspoon per plant twice a week. If you can find the product Kmag, this would satisfy the K, Mg and S needs. Add 1 teaspoon to foliar or drench per week per plant.

Calcium (Ca)

If you are having blossom end rot or collapsing of the pumpkin, it's generally related to Calcium, Boron and Potassium. After pollination, when you're burying the vines; add 1 heaping teaspoon Gypsum, 1 level teaspoon 0-0-50 and ½ teaspoon borax each time. Don't forget to thoroughly mix with your mycorrhiza, peat moss and other secret amendments. Also, don't forget Taberna's Secret Formula to stimulate bacteria and beneficial fungal growth: 2 cans of beer, 2 multivitamins, 2 aspirins, then pee in the hole after waiting an hour. This is a man's thing that naturally occurs in the backyard, so if you are a gal raising giants... put your significant other to work!

Micronutrients

When pre planting, it's best to use Metallic Sulfate materials. It's been found that sulfated forms of micronutrients retard onset fungal diseases.

Zinc (Zn)

The lab recommends 2 oz. of Zinc per 1000 and you are using Zinc Sulfate which contains 36% of Zn. 2/.36=5.6 ounces Zn to apply per 1000.

Manganese (Mn)

The lab recommends 1.5 oz. of Manganese. Manganese Sulfate is 24% Mn. 1.5/.24=6.3 oz. per 1000.

Copper (Cu)

The lab recommends .7 Copper. Copper Sulfate contains 25% Cu. 0.7/.25=2.8 oz. Copper Sulfate per 1000.

Boron (B)

If Boron is recommended, it's best to foliar or drench with 1 tablespoon of Borax. When burying the vine, don't go over ½ tablespoon of Borax.

In season when you're applying micronutrients, use chelated products. Some examples are amino acid chelates, or citric acid chelates. I suggest buying individually and not taking the shot gun approach. Fancy EDTA materials are fantastic but very poor for foliar application. EDTA is stable at any pH for 2 months in soil. These materials are prone to leeching. Giant pumpkin and melon growers tend to water heavily and may leach expensive chelated below the effective root zone. The amino acid and citric acids are readily absorbed by plant tissue. It also wouldn't hurt to add 1-teaspoon product to vine burial mix. Test 1 is a complete soil test using Western University's extraction methods. These methods are designed for Western soils that mostly tend to have pH's greater than 7. These methods were developed by Colorado State.

Giant pumpkin and watermelon growers have the best results with a soil pH between 7.2-7.8. The Soil Solution test emulates exudates that are given off by the plant roots to stimulate bacteria and fungi to release nutrients into the Soil Solution.

Roots only obtain nutrients from the Soil Solution. The complete soil test (Test 75) measures the extractable nutrients that is potential to the roots, Soil Solution testing (Test 75S) measures the nutrients the roots can see.

The soil solution gives you a heads up for problems in season. In the left column are the answers from the previous page. On the right are the Soil Solution test numbers that are available to the roots from the extractable nutrients.

When you see recommendations, it indicates these nutrients could be your limiting factors preventing you from maximum weight and quality from your fertilizer program. Remember plants get their oxygen from the roots. Oxygen must be present for most nutrients to be assimilated by roots. **KNOW YOUR WATER**

The numbers in the **SHOULD BE** column are higher than during the growing season because there are no roots present giving off organic acids. They are as follows:

ELEMENT:	SHOULD BE:
Phosphorus (P)	2 lbs.
Potassium (K)	15 lbs.
Calcium (Ca)	9 lbs.
Magnesium (Mg)	2 lbs.
Zinc (Zn)	85 g
Copper	56 g
Manganese (Mn)	85 g
Boron (B)	28 g

Pounds in Soil Solution

During growing season to get a pumpkin greater than 2500 pounds and watermelon greater than 250 pounds the following must be in the Soil Solution

Nitrogen- decreases to 3 pounds by August 10 Phosphorus: >2 all season

> Potassium: > 8 all season Sulfur: >1 all season Calcium: >3 all season Magnesium: >1 all season

Grams in Soil Solution

Zinc: >80 all season Manganese: >50 all season Copper: >15 all season Boron: >28 all season Iron is generally not an issue if you use acid residue fertilizers. Western Laboratories.com

211 Highway 95 • P.O. Box 1020 • Parma, ID 83660 800-658-3858

Date: Client:

Gardner: Garden ID: Lab Number 51204

ATLANTIC GIANT PUMPKI	N
SOIL REPORT	

SOIL REPORT								PAR	TS PER MILLI	ON-PI	PM			
pH WATER EXTRACT	pH SMP BUFFER	pH CaC	CaCI SOLUBLE		LIME	% OM	NITRA	ATE AN	IMONIUM	Pł	HOSPH	IORUS		
									NO3-N (PPM) NI	H4-N (PPM)	P(PP	M)	P BRAY
6.4	6.7	5.9	0	0.10	0.0	4.8	3		1	6	8	104.72		
EVALU	ATION							-						
	Slight Acid	ic	N	ormal	Good	Medium	Very I	Low		Hig	gh	Very High		
POUND	S PER AC	RE												
							9		3	20	4	314.16		
		E S		F	PART	S PER MI	LLION-PF	PM						
POTASSIU	M SULFUI	R CALC	UM	MAGNESI Mg	UM	SODIUM Na	ZINC Zn	COPPER CU	MANGANESE	IF	RON Fe	BORON		
264	6	142	26	196		40	5.0	1.7	8	1	06	0.9		
EVALUA	TION	-				1000	a dente		-	-				
Adequate	Very Lo	w Lov	N	Low		ок	High	Adequate	Adequate	Ade	equate	Adequate		
POUNDS	PER ACR	E					a here					a since		
792 19 4278		8	588		120	15 5.1		24	3	18	2.7			
Meq/100	GRAMS S	OIL	-				-		CEC by s	sun	n of	cations		
0.7		7.	1	1.6		0.2				1	9.6			
Texture		Silt Lo	bam	1	B	alance	Ideal	Yours	Evaluati	on	V	latch		
Cation E	xchange C	apacity-0	CEC	22	N:	S	10:1	0.6:1	Low		wa	atch N		
Perce	ent Base S	Saturatio	n	46	Ca	:Mg	6-20:1	7:1	ok					
-	TBS%				Ca	:K pH >7	15:1	:1						
В	ASES	IDI	AL	YOURS	Ca	:K pH <7	10:1	5:1	Low		watch Ca			
Calcium	% of CEC			32	Ca	:P pH >7	100:1	21:1	Low		wa	tch Ca		
Calcium	-70 OI CEC	65	-80	52	Ca	:P pH <7	40:1	21:1	Low		wa	tch Ca		
Magnesi	um-% of (CEC 10	-20	1	P:2	Zn	15:1	14:1	Low		Wa	atch P		
Potassium-% of CEC 2-6		-6	3	P:I	Mn	4:1	8.5:1	High			halt Out			
Sodium-% of CEC		5	1	- P:0		20:1	40:1	High		wa	tch Cu			
		57		:cu	3.1	2.9.1	nign		wa	tch Cu				
Hydroge	n-% of CE	C <	15	57	Mr	n:Zn	3:1	2:1	Low		wa			
					Mr	n:Cu	7:1	5:1	Low		wat	ich Mn		
	"Always	s practice			K:	В	200:1	293 :1	High	_	Wa	atch B		
	the laws of	Agronon	ny."		Mg	:K	2:1	0.7:1	Low		watch Mg			

John P. Taberna, Soil Scientist

NUTRIENT	SUGGESTIONS F	OR ATLANTIC G	AIANT PUMPKIN				
POUNDS PER 1	,000 SQUARE FEET	OUNCES PER 1,000 SQUARE FEE					
Nitrogen	3.6	Zinc	.7				
Phosphorus	2.1	Plant Food Iron					
Potassium	4.3	Manganese	1.8				
Sulfur	1.2	Copper	.1				
Gypsum		Boron	.4				
Lime	-						
Magnesium	.7						

* Split apply nitrogen. Do not apply more than five pounds of fertilizer on established vegetation at one time. Always irrigate following fertilization on established crop. Over and under irrigation is a major cause of poor plant appearance.

*Actual product is based on SO4 solutions. If using a chelate divide actual amount by factor 5 due to efficacy of chelates.

Visit the tutorial on our website to learn more www.westernlaboratories.com Western Laboratories.com 211 Highway 95 • P.O. Box 1020 • Parma, ID 83660 800-658-3858 • FAX 208-722-6550 http://www.westernlaboratories.com

Date: Client: Gardner:

Garden ID:

Lab Number 51204

ATLANTIC GIANT PUMPKIN 75S REPORT

EX	TRACTA	BLE NUTR		SOIL	SUPPLY			
ELEMENT	ANSWER	VER SHOULD BE RECS** PRE-PLANT ELEMENT ANSWER SHOULD BE		ADD ** WEEKLY				
			LBS	LBS			LBS / DAY	LBS
Phosphorus-ppm	68	25 - 40	2	1	P-lbs	0.5	2	0.24
Potassium-ppm	264	300 +	4	1	K-lbs	2.0	15	0.45
Calcium-ppm	1426	1,800 +	*		Ca-lbs	-lbs 4.4 9		*
Magnesium-ppm	196	250 +	1	0	Mg-lbs	3.0	2	
			OZ	LBS			grams / DAY	OZ
Zinc-ppm	5.0	1.0 - 3.0	1	0	Zn-grams	34	85	4.05
Copper-ppm	1.7	0.8 - 2.5	0	0	Cu-grams	11	56	3.55
Manganese-ppm	8	6 - 30	2	1	Mn-grams	9	85	6.08
Boron-ppm	0.9	0.8 - 1.2	.4		B-grams	28	28	

* Refer to soil report for Calcium recommendations, if needed.

** Recommendations in amount per 1000 sq.ft.

All chelating products can be used if the zinc, copper and magnesium are adequate. When the levels are below the should be levels, you need to use the elements in the sulfate forms. Disease suppressions are caused by the elements in their metallic forms. Chelates are an excellent sources for plant and production needs.

PRE-PLANT:

For disease suppression add 1/2 of the weekly recommendations for all micro nutrients in a sulfate or water soluble oxide in calcareous soils.

For plant needs and maximum bulking add the other 1/2 in chelate form by using the SV (Secret Vault) program to monitor weekly requirements.

1. If no lime and calcium is less than 1800 and soil solution is less than "should be" add 20 lbs. per 1000 sq.ft. of gypsum pre-plant.

If phosphate, potash and magnesium in soil solution are less than requires consider putting field on the SV Program to monitor it. If you are using the SV program and the phosphate, potash, and magnesium "should be" levels in the soil solution are higher than results on the SV Program, it is because the sample is taken with out the influence of the root system. In season results are lower because plant root gives off carbonaceous exodates.

Western Laboratories, Inc. P.O. Box 1020 • 211 Highway 95 • Parma, ID 83660 208-722-6564 • 800-658-3858 http://www.westernlabs.com

Dealer No:

Dealer :

Address

Reported: 7/13/2017 Grower: Sample ID:

Test # 11

Irrigation:

Crop: Atlantic Giant Pumpkin

GIANT PUMPKIN PLANT ANALYSIS REPORT

PLANT NUTRIENTS	SU	UFFICIENCY YOUR TE RANGE RESULT		SUFFICIENCY RANGE YOUR TEST RESULTS			NU IN O	TRIENT SU	JGGEST	IONS SQ.FT.	
NITRATE NO ₃ - ppm		5840		13877		FOL	IAR	INJECTI WATER	ON OR R RUN	YC	ULIED
NITROGEN N - %		-			N						
PHOSPHORUS P - %	0.8	1 - 1	1.2	0.89	Ρ						
POTASSIUM K - %	7.5	i - 1	2.0	12.90	κ						
SULFUR S-%	.23	-	.5	0.22	S	0.	55	3.6	64		
CALCIUM Ca - %	.5	- 2	.25	1.93	Ca						
MAGNESIUM Mg - %	.25	·	48	0.32	Mg						
ZINC Zn - ppm	42		75	40	Zn	0.0	07	0.0	09		
MANGANESE Mn - ppm	25		75	99	Mn						
COPPER Cu - ppm	13		45	12	Cu	0.04		0.07			
IRON Fe - ppm	75	- 5	00	109	Fe						
BORON B - ppm	24	-	70	26	В						
HIGH RANGE	•		•					•			
SUFFICIENT RANGE		•			•	•				•	•
DEFICIENT RANGE				•			•		•		
	N	P	K	S	Ca	Mg	Zn	Mn	Cu	Fe	В

To get how many oz. per 1000 sq.ft. you need to apply for each product, divide the % nutrient that is in the product (recommendation/%nutrient in product). Example if N recommendation is 7 oz per 1000 sq.ft. and the product has 15% N then 7/.15 = 46.6 oz of 15% N per 1000 sq.ft..

John P. Taberna, Soil Scientist

WESTERN LABORATORIES Disease Test Report

Lab: 61663

Dealer: PD

Grower:

Field ID:

Crop: Atlantic Giant Pumpkin

Date Rec'd 8/24/2017 Date Rep'd 8/25/2017

Soil		Unit	Evaluation	Plant	Evaluation
Pythium ultimum	664	cfu	high		
Phytophthora	ND		not detected		
Fus oxysporum	62	cfu	low		
Rhizoctonia					
verticillium	1	cfu	low		

Recommendations

Numbers in Soil are presented in Colony Forming Units per gram dry soil (CFU/g dry soil) or expressed in Ct values. Ct values higher than 30 are usually not a problem. Ct values less than 25 are serious cause of concern.

Harry Kreeft, plant pathologist Western Laboratories Inc. $H \ltimes recft$

Western Laboratories

P.O. Box 1020 · 211 Highway 95 · Parma, ID 83660 208-722-6564 · 1-800-658-3858 · FAX 208-722-6550

SECRET VAULT 2017

Dealer:

Grower

Variety:

Field id:

SV No: 19024

GDD nematodes

WEEK		Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	
1	LABORATOR	YNO	1870	4090	4090 6499	8450	9396					
Q	DATE		7/4	7/18	8/1	8/15	9/8					
		SUFFICIENCY RANGE	YOUR TEST	YOUR TEST	YOUR TEST	YOUR	YOUR TEST	YOUR TEST	YOUR TEST	YOUR TEST	YOUR TEST	YOUR TEST
PLANT	Nitrates ppm	> 2500	20582	16859	14360	14053	11414					
SOIL	Nitrogen Ibs	4.0	11	12	13	11	9					
PLANT	Phosphorus %	>0.81	0.52	0.53	0.3	0.44	0.47					
SOIL	Phosphorus Ibs	2.00	2.80	2.80	2.20	1.80	1.50					
PLANT	Potassium %	> 7.5	11.2	12.0	11.4	13.1	10.0					
SOIL	Potassium Ibs	8.0	48.9	55.3	49.1	38.0	36.0					
PLANT	Sulfur %	> .23	0.3	0.23	0.21	0.3	0.2					
SOIL	Sulfur Ibs	2.0	25.6	32.0	28.7	14.7	13.9					
PLANT	Calcium %	> .5	1.28	1.58	2.02	2.3	2.58					
SOIL	Calcium	3.0	6.1	7.6	5.8	5.5	4.4					
PLANT	Magnesium %	> .25	0.4	0.37	0.4	0.4	0.36					
SOIL	Magnesium Ibs	2.0	9.4	11.4	13.8	11.2	9.5					

							Field:				Page 2				
PLANT	Zinc	>	42	33	27	31	22	25						1	
SOIL	Zinc grams		80.0	150.0	114.0	90.0	84.0	69.0							
PLANT	Manganese ppm	>	25	32	25	32	40	47							
SOIL	Manganese grams		50.0	18.0	18.0	15.0	12.0	9.0							
PLANT	Copper	>	13	8	6	7	9	7							
SOIL	Copper grams		15.0	12.0	9.0	12.0	12.0	9.0							
PLANT	Boron	>	24	39	33	42	34	42							

SOIL TEST	NITROGEN IN POUNDS PER ACRE FOOT									
REPORT	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10
LABORATORY NUMBER	1870	4090	6499	8450	9396					
DATE	7/4	7/18	8/1	8/15	9/8					
Nitrates - Ibs	69	78	81	66	51					
Ammonium - Ibs	6	9	12	9	9					
Total Nitrogen - Ibs	75	87	93	75	60					

Field:

	FERTILIZER RECOMMENDATIONS IN POUNDS ACTUAL PER 1000 SQFT											
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
LAB NO	1870	4090	6499	8450	9396							
DATE	7/4	7/18	8/1	8/15	9/8							
ELEMENT	INJECT	INJECT	INJECT	INJECT	INJECT	INJECT	INJECT	INJECT	INJECT	INJECT	INJECT	INJECT
Nitrogen	0.19											
Phosphate	0.25	0.25	0.25	0.29	0.34							
Potash												
Sulfur		0.10	0.10		0.10							
Calcium												
Magnesium												
		The second	IN C	DUNC	ES A	CTU		R 10	00 SC	QFT		
Zinc	1.60	1.60	1.60	1.60	3.20							
Manganese	3.20	3.20	3.20	3.20	3.20					100		
Copper	1.60	3.20	3.20	3.20	3.20					A		
Boron												

*Actual product is based on SO4 solutions. If using a chelate divide actual amount by factor 5 due to efficacy of chelates.

Page 4

FOR TUTORIALS VISIT: www.westernlaboratories.com Click the Results/Tutorials tab... Username: soil No password

Login and view tutorials for Giant Pumpkins!

FOR TUTORIALS VISIT: www.westernlaboratories.com Click the Results/Tutorials tab... Username: soil No password

Login and view tutorials for Giant Pumpkins!

